The complexity of recognizing linear systems with certain integrality properties
نویسندگان
چکیده
Let A be a 0 − 1 matrix with precisely two 1’s in each column and let 1 be the all-one vector. We show that the problems of deciding whether the linear system Ax ≥ 1, x ≥ 0 (1) defines an integral polyhedron, (2) is totally dual integral (TDI), and (3) is box-totally dual integral (box-TDI) are all co-NP-complete, thereby confirming the conjecture on NP-hardness of recognizing TDI systems made by Edmonds and Giles in 1984.
منابع مشابه
On the modified iterative methods for $M$-matrix linear systems
This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...
متن کاملSequential second derivative general linear methods for stiff systems
Second derivative general linear methods (SGLMs) as an extension of general linear methods (GLMs) have been introduced to improve the stability and accuracy properties of GLMs. The coefficients of SGLMs are given by six matrices, instead of four matrices for GLMs, which are obtained by solving nonlinear systems of order and usually Runge--Kutta stability conditions. In this p...
متن کاملCandidate Lasserre Integrality Gap For Unique Games
We propose a candidate Lasserre integrality gap construction for the Unique Games problem. Our construction is based on a suggestion in [27] wherein the authors study the complexity of approximately solving a system of linear equations over reals and suggest it as an avenue towards a (positive) resolution of the Unique Games Conjecture. We use a new encoding scheme that we call the real code. T...
متن کاملTotal Dual Integrality in Some Facility Location Problems
Facility location, arising in a rich variety of applications, has been studied extensively in the fields of operations research and computer science. In this note we consider the classical uncapacitated facility location problem and its “prize-collecting” variant introduced by Bäıou and Barahona, and show that the linear systems associated with these problems are totally dual integral (TDI) if ...
متن کاملIntegrality of Gopakumar–vafa Invariants of Toric Calabi–yau Threefolds
The Gopakumar–Vafa invariant is a number defined as certain linear combination of the Gromov–Witten invariants. We prove that the GV invariants of the toric Calabi–Yau threefold are integers and that the invariants at high genera vanish. The proof of the integrality is the elementary number theory and that of the vanishing uses the operator formalism and the exponential formula.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 114 شماره
صفحات -
تاریخ انتشار 2008